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Hypersalinity in Florida Bay: A low-dimensional nonlinear model 
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EXECUTIVE SUMMARY 

Hypersalinity events in the coastal basins of Florida Bay are an annual occurrence driven by 
a combination of meteorologic, hydrologic, and oceanographic influences. Episodically, cli­
matic conditions prevail that produce extreme hypersalinity events (salinity greater than 50 
g/kg) associated with large scale seagrass die-offs triggering a cascade of ecological impacts 
and regional collapse of an entire ecosystem. Statistical regression models that estimate salin­
ity based on linear predictors in a high–dimensional phase space are found to be less robust 
than nonlinear predictors in a low–dimensional phase space. A composite logistic-Gaussian 
function is used to model the nonlinear relation between basin runoff and salinity, and this 
nonlinear predictor performs better than linear models in the estimation of hypersalinity 
events in coastal basins of Florida Bay. 
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FOREWORD 

Everglades National park is globally recognized as a beautiful and delicately balanced ecosys­
tem. This recognition stems back to the early 20th century as famously expressed in Marjorie 
Stoneman Douglas’ 1947 book The Everglades: River of Grass. What may be less well-known 
is that nearly one-third of Everglades National park consists of Florida Bay, an estuarine 
and shallow marine wilderness spanning the southern terminus of the river of grass. Florida 
Bay is home to vast areas of mangroves and seagrass beds forming a vital nursery for many 
species of fish and invertebrates, sustaining both a pristine wilderness and an economically 
vibrant recreational fishing industry. 

While Florida Bay is geologically young, less than 5,000 years, instrumented records of its’ 
physical characteristics span only decades. Hypersalinity events in the coastal basins of 
Florida Bay are an annual occurrence, but we have observed only two instances of extreme 
hypersalinity events. The first occurred in 1987 and a second in 2015, leading to cascading 
collapses of the marine and estuarine ecosystems. As scientists, our role is to try and un­
derstand how environmental conditions lead to these hypersalinity events with the goal of 
informing regional water management decisions, as well as to develop ecosystem indicators 
for the Comprehensive Everglades Restoration Plan (CERP). 

One way to investigate and understand relationships between the meteorologic and hydro-
logic conditions that lead to hypersalinity events is with statistical and functional analysis 
of observed salinities and environmental conditions. In this report, the authors demonstrate 
synthesis of a computer model representing freshwater flow from the Everglades river of 
grass into Florida Bay, with nonlinear functions describing relationships between freshwater 
flow, salinities in the Gulf of Mexico, and salinities in the northern basins of Florida Bay. 
Their model relies on just two physically important input variables, hence the character­
ization low-dimensional, providing an improvement over existing statistical models in the 
attribution and prediction of hypersalinity events in Florida Bay. Analysis and models as 
demonstrated in this report mark progress in our collective efforts to protect and restore 
the Everglades, while underscoring the need for continued environmental monitoring and 
diligence. 

Robert Johnson 
Director 
South Florida Natural Resources Center 
Everglades National Park 

October 2016 
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1 Hypersalinity in Florida Bay 

1 Introduction 

Florida Bay is a shallow marine and estuarine wilderness at the southern end of the Florida 
peninsula situated between the Everglades, Gulf of Mexico, and Atlantic Ocean (figure 1). 
The bay is largely contained within the boundaries of Everglades National Park and sup­
ports diverse ecological habitats including freshwater marshes, mangroves, and seagrasses. 
Collectively, Florida Bay spans an area of approximately 2,200 km2, however, it is not a con­
tiguous open water environment but a tessellation of interconnected shallow basins separated 
by carbonate mud banks and mangroves. 

Hydraulic connectivity between basins varies greatly with relatively large exchanges in re­
lation to basin volume in the marine areas of the southern and western bay, and very little 
exchange among the estuarine coastal basins along the peninsula. These shallow, isolated 
coastal basins experience phenomenal excursions in salinity ranging from near zero during 
times of heavy rainfall and high water levels in the Everglades, to above 60 g/kg during 
hypersalinity events associated with drought and high evaporation conditions. The rela­
tive isolation of the coastal basins coupled with the potential for large amplitude, localized 
precipitation, runoff, and evaporation allows both hypersaline and hyposaline estuarine con­
ditions to exist simultaneously in different basins across the bay. 

Figure 1. 

Map of Florida Bay including 
physiographic features of 
the terrestrial Everglades. 
Salinity and water level 
measurement stations are de­
noted with the two and four 
letter abbreviations (e.g., LM, 
NP62). Basin boundaries of 
the BAM model are shown in 
Florida Bay. Coastal basins 
where the models are applied 
are shaded and correspond 
to observation stations as 
follows: Snake Bight : BK, 
Rankin Lake : GB, Little 
Madeira : LM, Long Sound 
: LS, Manatee Bay : MB, 
Barnes Sound : MD. 

Seagrasses are widely present in Florida Bay and form the base of the ecological web that 
thrives there. They release dissolved carbon consumed by microorganisms at the bottom 
of the food chain, and seagrass leaves provide food for snails, urchins, sea turtles, fish, 
waterfowl, and manatees. Seagrass detritus is another primary food source for protozoans 
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and nematodes, which in turn provide sustenance for shrimp, crabs and fish, which are 
then consumed by larger fish. It is thought that historically freshwater runoff from the 
Everglades, and dilution of Florida Shelf salinities in the Gulf of Mexico from Shark River 
flows, mitigated the development of hypersaline conditions in the northern Bay (Marshall 
and Wingard , 2014). Since the turn of the 20th century, an ambitious series of water control 
and drainage features have fundamentally altered the historic flow of freshwater into the 
bay and homogenized the seagrass diversity to be dominated by a single species, Thalassia 
testudinum, commonly referred to as turtle grass (Forqurean and Robblee, 1999). 

In 1987, a lingering drought combined with high temperatures resulted in hypersaline con­
ditions and high water temperatures reducing the dissolved oxygen capacity of the water. 
This event triggered widespread turtle grass mortality followed by decomposition of the de­
tritus resulting in high oxygen consumption due to excess carbon release, thereby fueling 
microorganisms to further consume oxygen. This feedback to anoxic conditions is thought 
to accelerate sulfate reduction in sediments liberating sulfide gas which is lethal to plants 
(Koch et al., 2007a; Rudnick et al., 2005). The initial seagrass die–off covered 40 km2, but 
eventually expanded to affect over 240 km2 as a result of cascading algal blooms leading to 
widespread seagrass die–off and fauna mortality (Koch et al., 2007b). 

In 2015, a local drought resulted in record low runoff during the usually wet summer, and by 
June 2015 daily average salinities in the central coastal basins exceeded maximums recorded 
over the previous decade. By mid–July, salinity peaked at 72 g/kg, the highest value recorded 
in 68 years of records. Concurrent with this hypersalinity event was a large seagrass die–off 
which eventually covered 160 km2 . Such a collapse at the base of the ecological web cascades 
into a local environmental crisis where seagrass beds are severely impacted, sediments become 
less stable, and the bay becomes less hospitable to marine and estuarine life. Effects from 
such events can linger for decades. 

The ability to model and forecast hypersalinity events therefore has importance to the ecolog­
ical health of Florida Bay and the adjacent coastal waters, can serve to inform regional water 
management decisions, and can be used as an indicator for success in the Comprehensive 
Everglades Restoration Plan (CERP). 

1.1 Salinity in Florida Bay 

Salinity in Florida Bay is highly variable, both in time and space, as governed by the in­
fluences of precipitation, evaporation, runoff, and mass exchange with adjacent basins and 
water bodies. Kelble et al. (2007) classified Florida Bay as a seasonally hypersaline estuary 
where the net freshwater input fluctuates widely throughout the year, but is near zero on 
an annual basis. This is reflected in an annual cycle where hypersaline conditions prevail at 
the end of the dry season in early summer transitioning to estuarine conditions at the end 
of the wet season in early winter. Salinities and environmental variables are monitored by a 
network of hydrographic, oceanographic, and meteorological stations operated by Everglades 
National Park as shown in figure 1. 
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Studies of salinity in Florida Bay appear to have been initiated by Tabb (1967) who used 
linear models to relate eastern coastal basin salinities with groundwater levels in Homestead, 
Florida and water levels in Shark Slough to the salinity front along the western coastal basins. 
Tabb recognized that water in Shark Slough, which eventually enters the Gulf of Mexico from 
Shark River and distributaries of Whitewater Bay, does not have a substantial overland flow 
path into Florida Bay. Nonetheless, a hydraulic head relationship exists between water levels 
in the southern Everglades and freshwater input, as expressed in strong negative correlations 
between Everglades water level and coastal basin salinity (Marshall et al., 2011). 

Potential mechanisms for transport of Everglades freshwater into Florida Bay include stream-
flow, overland flow and submarine groundwater. Streamflow is the only component that has 
been quantified (Hittle et al., 2001), although Corbett et al. (1999) reported spot measure­
ments of groundwater with significant spatial variability. Langevin et al. (2004) modeled 
the hydrology of the coupled Everglades–Florida Bay system finding that streamflows are a 
primary contributor on interannual and longer timescales, overland flow can be important 
at daily, weekly or monthly timescales, and that groundwater is dependent upon the relative 
water stage relationship between the Everglades and bay. 

Nuttle et al. (2000) found that increased runoff into the bay would lower salinity in the eastern 
bay but have little effect in the western bay. However, they only considered runoff composed 
of streamflow from Taylor Slough and the C-111 canal into the eastern bay. They also applied 
several statistical and conceptual models demonstrating the difficulty of high–fidelity salinity 
estimation in Florida Bay. Kelble et al. (2007) analyzed monthly salinity data from ship 
measurements over a 7–year period (1998–2005) assessing mean and regional bay salinities, 
finding the expected negative correlation between runoff and salinities. Interestingly, they 
found a negative mean annual net freshwater supply of -5.3 cm, yet no overall increase in 
salinity over the period. This could be a result of inadequate runoff assumptions as their 
runoff was determined solely from streamflow measurements of nine streams discounting 
numerous small streams, sheetflow, and submarine groundwater. 

Marshall et al. (2011) contributed a comprehensive review and analysis of Florida Bay salin­
ities, suggesting that multivariate linear regressions of salinity against Everglades stage, 
regional wind, remote sea surface elevation, and flow into Shark River Slough or Taylor 
Slough could provide high fidelity salinity estimates at many basins. They reported roughly 
the same level of accuracy as numerical simulation models, but at a significantly reduced 
overhead. Their work was seminal in the sense that it filled critical information gaps in 
the planning of Everglades restoration which develops simulated hydrologic surfaces across 
several decades to compare alternative water resource scenarios and their impacts on the 
regional ecosystem. Although the results were generally good, errors in the coastal basins 
could be large. It should be noted that their model coefficients were determined largely over 
the periods from the mid–to–late 1990s through 2002. 
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1.2 Linear Model Limitations 

The linear models of Marshall et al. (2011) are attractive since their application is not 
resource intensive, however, a review of their independent variables suggests a lack of inde­
pendence in some cases and questions of physical relevance in others. For example, their 
model for salinity at Garfield Bight (GB) contains water stage from two Everglades stations, 
CP and NP62, as well as terms for wind components at Key West and Miami. A linear 
regression between daily mean water stage at NP62 and CP over the period September 1, 
1999 to December 31, 2015 finds a coefficient of 1.14 with R2 = 0.75 and p–value < 1E-5. 
Likewise, a linear regression of Key West and Miami wind components finds an R2 = 0.41 
(p–value < 1E-5). This suggests that assumed independence between these variables may 
not hold. Application of the Durbin–Watson test for serial autocorrelation between CP 
water stage and GB salinity finds a value of 0.07 (p–value < 1E-5) suggesting significant 
autocorrelation in the stage data. These auto and cross variable correlations suggest that 
caution may be warranted in the interpretation of error estimates and significance tests. 

Regarding physical significance, the formula for GB includes terms for wind velocity at both 
Key West and Miami lagged by 4 days. While local winds play an important role modulating 
the inter–basin mass fluxes and salinity on short time scales (Lee et al., 2016; Langevin et 
al., 2004), it seems likely that wind speeds lagged by four days some 100 km away may 
not have direct physical relevance. Lastly, their regressions contain from 4 to 8 assumed 
independent variables. With such a high–dimensional parameter space the likelihood of 
overfitting increases which can reduce overall robustness and prediction accuracy when the 
environmental parameter regimes have changed and are not contained within the phase–space 
that was sampled when the regression coefficients were determined. Such data overfitting 
is a primary weakness of automated stepwise regressions wherein blind usage of regression 
variable selection criteria such as Mallow’s Cp may not provide the best model structure (van 
der Voet et al., 1997). 

Nonetheless, the regressions have been shown to be accurate predictors when applied close 
in time to the periods over which the regression coefficients were determined providing a 
useful and efficient tool for assessing salinity in Florida Bay. 

1.3 Nonlinear Terms 

Another potential difficulty with simple linear modeling is that geophysical phenomena in 
general, and those exhibiting threshold behavior in particular, exhibit nonlinear responses 
in relation to forcings. A case in point as used in the Marshall et al. (2011) linear regres­
sions can be found in the NP62 stage data and salinity at Garfield Bight. Examination 
of daily mean stage at NP62 and daily mean salinity in Garfield Bight reveals a nonlinear 
relation, one that is better fit by an exponential decay SGB = s0 − a(1 + r)NP62 rather than 
a linear predictor SGB = s0 − a NP62, where SGB is the observed salinity at Garfield Bight, 
NP62 the stage at NP62, s0 a bias term, a a fit coefficient, and r the rate of exponential decay. 
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A primary aim of the current work is to address some of the limitations encountered by 
Marshall et al. (2011) through the use of nonlinear predictor variables and a significant 
dimensional reduction. Our models have only two independent variables, basin runoff and 
boundary domain salinity. Runoff is determined by a mass–conservative numerical model 
based on observed water stage in the Everglades, observed rainfall and evaporation, observed 
and tidally predicted ocean water level, and basin water levels estimated by the numerical 
model. Boundary salinity is empirically determined from gauge observations. 

The relationship between runoff and salinity is nonlinear, and we use a composite logistic– 
Gaussian kernel designed to capture both the limiting response of salinity, and the localized 
peak in response to basin runoff as described below. This nonlinear predictor allows the 
model to capture hypersalinity events that are difficult to represent with simple linear pre­
dictors. 

In the following sections, we describe the runoff and boundary salinity variables, present 
linear and nonlinear versions of salinity models, and compare application of these models 
with the model of Marshall et al. (2011). 

2 Runoff and Boundary Salinity 

Runoff in our model is an aggregate flow governed by the hydraulic potential between water 
levels in the Everglades and coastal basins as determined by a mass–conservative numerical 
model, the Bay Analysis Model (BAM Park et al. (2016)). BAM decomposes Florida Bay 
into 54 basins based on the geomorphology of the mangroves, buttonwood banks, and shoals 
separating individual basins. Mass–transport over the interconnecting shoals is governed by s 

hu−hdthe transport velocity v = 2g 
1+f integrated over the shoal depth and length (cross–flow 

dimension), where hu and hd are the upstream and downstream water levels, f = 2gn2wρ−4/3 

a friction factor where n is the Mannings friction, w the shoal width (along–flow dimension), 
ρ the shoal hydraulic radius and g the vertical acceleration. We note that the BAM model 
convention for runoff in a basin is that positive runoff corresponds to flow leaving the basin, 
while negative runoff quantifies flow entering the basin. 

Each basin is forced with rainfall and evaporation. Basins on the Gulf of Mexico and Atlantic 
Ocean boundaries are also forced across the appropriate shoals with sea levels consisting of 
tidal variations and interannual sea level changes. Coastal basins along the Everglades 
boundary are forced with water levels determined from the Everglades Depth Estimation 
Network (EDEN) (Telis et al., 2014) with the shoal properties (length, width, depth) cali­
brated to match aggregate runoff from the FATHOM model (Marshall et al., 2008). 

Salinity on the Gulf of Mexico boundary has significant variability in comparison to open 
ocean seawater. Here, the Florida Shelf has a wide, flat and shallow bathymetry, with 
a generally weak, northerly countercurrent to the Loop current. This allows hypersaline 
conditions to develop during times of high evaporation and weak circulation. The shelf also 
receives freshwater runoff from the Shark River and Everglades distributaries, and significant 
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subtropical rain events can also contribute to hyposaline conditions. Boundary salinity for 
this domain is computed from a 4–gauge average of daily mean salinity at the stations MK, 
JK, LR, and PK (figure 1), which has an overall standard deviation of 1.7 g/kg over the 
period September 1, 1999 to December 31, 2015 (N = 5943). 

On the Atlantic side salinity is less variable than the Florida Shelf, but still ranges consider­
ably in comparison to open ocean values. The Lignumvitae basin (station PK) in southern 
Florida Bay is a predominantly marine environment with significant exchange with the At­
lantic, and we use a six–month lowpass filter applied to the PK station salinity to represent 
Atlantic boundary salinities. 

2.1 Rain, Evaporation, and Wind 

It is worth noting that rain and evaporation are not explicitly included as independent 
variables in the nonlinear salinity model. Rather, they implicitly influence the hydraulic 
gradient that determines the runoff input by influencing water levels in both the Everglades 
and coastal basins. The initial version of the regression model did include a term consisting of 
daily mean rainfall minus evaporation, however at this short timescale there was no evidence 
of a functional relationship between rainfall minus evaporation to basin salinities and the 
term was discarded. We also note that wind effects are not included in our models. 

3 Regression Models 

We examine three regression models for Florida Bay salinity, a simple linear model (LM) of 
runoff and boundary salinity, a model with nonlinear (NL) predictors for runoff and boundary 
salinity, and the linear regressions of Marshall et al. (2011). The linear model is simply: 

SLM = γ R + η SBC (1) 

where R is the basin runoff and SBC the boundary salinity with fit coefficients γ and η. 

The model with nonlinear terms specifies the runoff to salinity relation as: 

SR = sR0 + A/(1 + e −a(R−RL)) + B e−(R−RG)2/2σ2 
(2) 

where sR0 is a constant, A and B amplitudes of the logistic and Gaussian terms respectively, 
a a logistic slope parameter, R the runoff, RL and RG location offsets for runoff in the 
logistic and Gaussian terms respectively, and σ a shape parameter of the Gaussian term. 
The nonlinear boundary salinity to observed salinity term is: 

)SBC SS = sS0 + (1 + rs (3) 

where sS0 is a constant, rs is the rate of change, and SBC the boundary salinity. These two 
terms are superposed to form the NL model: 

SNL = αSR + β SS (4) 
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where α and β are fit coefficients on the nonlinear runoff and boundary salinity terms re­
spectively. 

An examination of daily mean observed salinity versus runoff values over the period Septem­
ber 1, 1999 to December 31, 2015 at four coastal basins is shown in figure 2. Each of these 
relationships is clearly nonlinear, and two general properties are apparent. First, as exempli­
fied in the Snake Bight and Rankin Lake basins, there is a saturation or limiting response at 
high positive runoffs. This could be a reflection of wet–season dynamics where basin runoff 
is large throughout the area, mitigating the occurrence of hypersalinity, or an effect from 
annual sea level maximums where exchange between the marine waters and basin waters are 
maximized, again limiting the potential for hypersalinity. Regardless of the cause, such a 
saturation dynamic can be modeled with a logistic function whereas a linear function could 
be inappropriate. 

Figure 2. 

Observed mean daily salinity 
plotted against BAM model 
runoff at four coastal basins 
over the period September 1, 
1999 to December 31, 2015. 
Linear regressions are shown 
in red, with the nonlinear 
predictor from equation 2 
in green. Negative runoff 
corresponds to flow entering 
the basin, positive runoff to 
flow leaving the basin. 

The second property is one of localized hypersalinity at near–zero or slightly negative values 
of runoff, a feature inherently unsuitable for a linear function but which can be addressed 
with a Gaussian kernel. The presence of such localized hypersalinity features in the phase– 
space may be reason that simple linear models have difficulty capturing hypersalinity events. 
The nonlinear model parameters were determined by nonlinear optimization, and are listed 
in table 1. 

Table 1. Nonlinear runoff and boundary salinity parameters for equations 2 and 3. 

Basin sR0 A a RL B RG σ sS0 rs 

Snake Bight 25.2 11.2 0.5 -7.2 18.2 0.8 0.7 17.5 0.084 
Rankin Lake 15.7 19.1 0.5 -5.4 23.2 0.7 0.8 4.7 0.095 
Little Madeira Bay 0.8 22.3 1.5 -3.1 21.8 -0.5 0.6 -4.3 0.097 
Long Sound 5.4 19.3 1.2 -4.3 13.4 -2.0 0.7 -4.0 0.094 
Manatee Bay 0.6 20.5 2.0 -3.8 18.3 -1.5 1.0 7.3 0.088 
Barnes Sound 5.3 25.4 1.1 -4.4 8.7 -0.6 0.4 10.9 0.084 
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Plots of daily mean observed salinity versus boundary salinity values over the period Septem­
ber 1, 1999 to December 31, 2015 is shown in figure 3. Here, the response is approximately 
linear, although the nonlinear growth functions provide slightly smaller residual standard 
errors (Snake Bight εLM = 3.25, εNL = 3.18; Rankin Lake εLM = 7.71, εNL = 7.49; Little 
Madeira εLM = 5.55, εNL = 5.31; Manatee Bay εLM = 4.45, εNL = 4.35). 

Figure 3. 

Observed mean daily salinity 
plotted against boundary 
salinity at four coastal basins 
over the period September 1, 
1999 to December 31, 2015. 
Linear regressions are shown 
in red, with the nonlinear 
predictor from equation 3 in 
green. 

4 Results 

The linear and nonlinear models (equations 1 and 4) were regressed against daily mean 
salinity at six coastal basins over the period September 1, 1999 through December 31, 2015 
with the resultant fit coefficients shown in table 2. We also utilized the linear models of 
Marshall et al. (2011) and applied all three models to estimate basin salinities over this 
period. 

Basin γ η α β Table 2. 
Snake Bight 0.445 1.030 0.120 0.874 
Rankin Lake 2.122 1.058 0.361 0.630 Linear and nonlinear model 
Little Madeira Bay 2.013 0.729 0.107 0.852 fit coefficients of equations 
Long Sound 2.897 0.915 0.397 0.645 1 and 4 over the period 

September 1, 1999 throughManatee Bay 0.124 0.799 0.167 0.802 
December 31, 2015. Barnes Sound 2.238 0.880 0.317 0.653 

Figures 4 and 5 present the model comparison and residuals at Snake Bight, listing the RMS 
and maximum model errors on each plot. Since we are interested in hypersalinity events, s N we define the RMS error as εRMS = n (max(0, S − Ŝ))2/N , where S is the observed 
salinity, Ŝ the estimate and N the number of points in the series. Although we are assessing 
positive residuals, the same relative error relationships between the models hold with the 
canonical definition. Here we see that the Marshall et al. (2011) model does not capture 
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the hypersalinity events in 2004, 2008 or 2015, and the linear model performs only slightly 
better in that regard. The nonlinear model does not fully reproduce the extreme hypersalinity 
events of 2004 and 2015, but does effectively capture these events with smaller mean and 
maximum errors than the linear models. 

Figure 4. 

Model comparison at Snake Bight. Top: Linear 
model of Marshall et al. (2011). Middle: Linear model 
of equation equation 1. Bottom: Nonlinear model of 
equation 4. 

Figure 5. 

Model residuals at Snake Bight. a) Observed salin­
ity data. b) Linear model of Marshall et al. (2011). 
c) Linear model of equation 1. d) Nonlinear model of 
equation 4. 

Results from Rankin Lake are shown in figures 6 and 7 where the Marshall et al. (2011) 
model performs well over most of the record, but fails to predict the 2015 hypersalinity 
event and produces higher variance over the entire record. Similar results are obtained at 
Little Madeira Bay in figures 8 and 9. Results at Manatee Bay are presented in figures 
10 and 11 where again the 2015 hypersalinity event is not well represented in the linear 
models and the model of Marshall et al. (2011) produces estimates with a higher variance. 
A notable feature of the Marshall et al. (2011) model is that after 2004, there seems to be a 
general divergence from the observed salinities. This may be indicative that the finely–tuned 
and high–dimensional model of Marshall et al. (2011) has encountered a somewhat different 
parameter regime (phase–space), such that the model has reduced accuracy. 

Figure 6. 

Model comparison at Rankin Lake. Top: Linear 
model of Marshall et al. (2011). Middle: Linear model of 
equation 1. Bottom: Nonlinear model of equation 4. 

Figure 7. 

Model residuals at Rankin Lake. a) Observed salin­
ity data. b) Linear model of Marshall et al. (2011). 
c) Linear model of equation 1. d) Nonlinear model of 
equation 4. 
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Figure 8. 

Model comparison at Little Madeira Bay. Top: Lin­
ear model of Marshall et al. (2011). Middle: Linear model 
of equation 1. Bottom: Nonlinear model of equation 4. 

Figure 9. 

Model residuals at Little Madeira Bay. a) Observed 
salinity data. b) Linear model of Marshall et al. (2011). 
c) Linear model of equation 1. d) Nonlinear model of 
equation 4. 

Figure 10. 

Model comparison at Manatee Bay. Top: Linear 
model of Marshall et al. (2011). Middle: Linear model of 
equation 1. Bottom: Nonlinear model of equation 4. 

Figure 11. 

Model residuals at Manatee Bay. a) Observed salin­
ity data. b) Linear model of Marshall et al. (2011). 
c) Linear model of equation 1. d) Nonlinear model of 
equation 4. 

A comparison of model errors at all six basins is shown in table 3. The results are consistent 
in that the models progress from larger to smaller errors as one considers the linear model of 
Marshall et al. (2011), a low–dimensional linear model, and the low–dimensional nonlinear 
model. Operationally, this suggests that the nonlinear model is better suited than the linear 
models for hypersalinity estimates. 

Table 3. 
Marshall Marshall LM LM NL NL 

Basin εRMS εmax εRMS εmax εRMS εmax Comparison of RMS and 
Snake Bight 3.6 27.1 1.9 18.8 1.5 12.4 maximum model errors over 
Rankin Lake 5.6 37.1 3.8 29.1 3.4 16.9 the period September 1, 1999 
Little Madeira 5.1 25.1 3.9 20.9 2.9 16.0 through December 31, 2015, 

Long Sound 6.8 38.2 3.9 22.6 3.3 16.4 units are g/kg. LM is the 
linear model of equation 1Manatee Bay 5.2 30.7 2.5 14.9 2.0 11.2 
and NL the nonlinear model Barnes Sound 3.0 17.5 2.3 12.7 2.1 13.1 
of equation 4. 
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However, we should also compare model errors over the common period of regression with 
the model of Marshall et al. (2011), which ended in 2002, and table 4 presents model error 
comparisons over the period September 1, 1999 through December 31, 2002. We find the 
same general model behavior with the low dimensional linear and nonlinear models perform­
ing better than the model of Marshall et al. (2011) except in the Barnes Sound basin, where 
the models perform nearly the same. 

Table 4. 
Marshall Marshall LM LM NL NL 

Basin εRMS εmax εRMS εmax εRMS εmax Comparison of RMS and 
Snake Bight 2.7 13.3 1.2 7.4 1.0 7.4 maximum model errors over 
Rankin Lake 4.5 26.5 3.4 29.1 2.6 13.7 the period September 1, 1999 
Little Madeira 3.3 17.8 2.1 11.9 1.6 10.2 through December 31, 2002, 

Long Sound 3.6 21.8 1.2 9.9 1.2 10.1 units are g/kg. LM is the 
linear model of equation 1Manatee Bay 3.7 17.3 0.7 6.1 0.9 7.6 
and NL the nonlinear model Barnes Sound 1.5 11.9 1.6 12.7 1.6 13.1 
of equation 4. 

5 Discussion 

Hypersalinity events in coastal basins of Florida Bay are associated with important ecological 
events such as widespread seagrass die–offs resulting in the collapse of an entire food web. 
While the bay is well–instrumented providing good spatial coverage and near real time obser­
vations of salinity and other physical variables, the ability to efficiently model hypersalinity 
events could provide actionable information in the months leading up to a hypersalinity 
event. 

Two approaches for modeling the development of hypersalinity conditions include numerical 
models and statistical regressions. Numerical models entail significant resource commit­
ments, while statistical models offer efficient estimates. Marshall et al. (2011) contributed 
an ambitious and comprehensive set of linear models for 21 basins in Florida Bay, effectively 
filling a void in the space of statistical models for bay salinity. While useful, these regressions 
may be limited by significant cross–correlations of the assumed independent variables, se­
rial correlation in the independent variables, the nonlinear nature of the dependent variable 
relationships, and a highly–dimensional phase space that may allow for overfitting of the 
model. We have developed an alternative statistical model aimed at addressing the latter 
two issues: inherent nonlinearity of the dependent variables and a reduced phase space and 
number of assumed independent variables. 

Even though our model results in a significant dimensional reduction, its data are not im­
mune to serial or cross–correlations, although these issues are less severe than the application 
of Marshall et al. (2011). For example, while the presumed independent Everglades stage 
variables of CP and NP62 used by Marshall et al. (2011) have a linear coefficient of de­
termination of 1.14, R2 of 0.75, and a mutual information of 0.62 bits/measurement, the 
variables of runoff and boundary salinity have a linear coefficient of 0.44, R2 of 0.13 and 
mutual information of 0.23 bits/measurement. A ratio of the mutual information suggests 
that the runoff : salinity variables have about 1/3 the interdependence of the stage variables 
( (20.23 − 1)/(20.62 − 1) = 0.32 ). 

http:1)/(20.62
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While the logistic–Gaussian function improves the estimation of hypersalinity events, its non­
linear nature, specifically the Gaussian localization of hypersalinity as a function of runoff, 
predisposes the model to predict hypersalinity. Figure 2 shows many runoff : salinity oc­
currences that are not well–represented by the function such that this model is not tailored 
to hyposalinity events and would not perform well in the estimation of hyposalinity. How­
ever, hyposalinity is a normal occurrence in the coastal basins of Florida Bay to which the 
ecosystems are well–adapted, and it is the hypersalinity events with the potential to initiate 
widespread ecological damage that are the focus of this work. 

It should also be noted that our application is specific to coastal basins where runoff from 
the Everglades can be estimated. However, the use of nonlinear and dimensionally compact 
predictor functions is a straightforward exercise that can be applied to non–coastal basins 
with a model based on inter–basin flows and boundary salinity. Development of the nonlinear 
predictors has also raised questions regarding the nature of runoff and salinity dynamics, 
specifically, what physical processes govern the salinity saturation at positive runoff (outflow) 
values? Speculation could include large freshwater inter–basin flows during the wet–season, 
and large boundary inflows with seawater during seasonal cycles with elevated sea levels. It 
would also be informative to identify truly independent variables within limited dimensional 
phase spaces to improve attribution of physical significance and robustness of the estimates. 

6 Conclusion 

Florida Bay is an ecologically diverse marine and estuarine wilderness at the base of regional 
ecosystems and food webs for the Gulf of Mexico, Florida Keys, and Atlantic coastal areas 
of southern Florida. Hypersalinity events in the bay are part of a natural annual cycle, 
but climatic extremes can lead to prolonged and extreme hypersalinity events leading to a 
cascading collapse of the marine and estuarine ecosystems. Linear regression models offer 
computationally efficient means to estimate salinity, however, the use of linear predictor 
functions and highly dimensional interdependent variables may not be appropriate given the 
inherently nonlinear nature of the functional relationships, and may obscure attribution of 
physical relevance. 

We have applied a composite logistic–Gaussian function to model the nonlinear relationship 
between coastal basin runoff from the Everglades and basin salinity, and a power–law growth 
function to model the boundary salinity and basin salinity relationship. Comparison of this 
model to a simple linear model based on proportional runoff and boundary salinity reveals 
that the nonlinear model estimates overall and hypersalinity conditions with lower mean and 
maximum error. Comparison of the simple linear model to a highly dimensional linear model 
applied by Marshall et al. (2011) finds that the reduced dimension model provides estimates 
with lower mean and maximal errors than the high–dimensional linear model. 
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