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Abstract-A method is developed to estimate ocean sound speed 
profiles through synthesis of remotely measured environmental 
data and historical statistics of sound speed obtained at the 
remotely sensed location. Sound speed profiles are represented 
by an expansion of empirical orthogonal functions (EOF) of 
the historical sound speed variation, while the remotely sensed 
environmental data provide real-time information to determine 
the expansion coefficients. Environmental inputs are limited to 
sea surface temperature available from satellite infrared sensors, 
acoustic time-of-flight and ocean bottom temperature measurable 
from bottom mounted acoustic and thermal transducers. A mul- 
tilayer perceptron neural network is implemented to learn the 
functional transformation from the measured environmental in- 
put to the desired EOF coefficient output on a set of representative 
sound speed profiles. Sea surface temperature, time-of-year, and 
time-of-flight from the acoustic multipath that maximally samples 
the vertical sound speed are found to be the dominant inputs. 
The trained network is computationally efficient and produces 
estimates for untrained environmental inputs with a mean error 
of 1.1-4.4 d s .  

I. INTRODUCTION 
N ocean acoustics applications, uncertainty in quantification 
of environmental parameters often presents a fundamental 

limitation to the utility of the acoustic measurement/prediction 
problem at hand. In the case of acoustic vehicle tracking, 
accurate spatio-temporal quantification of the sound speed 
profile (SSP) is crucial to the quality of the tracking solution. 
It is also accepted that accuracy of matched field processing 
structures are intimately tied to the environmental mismatch 
of the replica field. Often, the only resource available to 
sample the acoustically important environmental parameters 
relies on deployment of mechanical sensors such as expend- 
able bathythermographs (XBT’ s) or conductivity-temperature- 
depth (CTD) probes. To obtain at-sea environmental data 
over a large spatial extent within a small time window with 
such mechanical devices is inherently costly and potentially 
hazardous in heavy weather. This paper demonstrates the feasi- 
bility of realizing a remote-sensing SSP monitoring system for 
locations where multiple bottom mounted acoustic/temperature 
sensors are installed, such as at existing deep water and 
planned shallow water Navy underwater tracking ranges. 

The approach is based on integration of remotely sensed 
environmental data with empirical statistics of the SSP to 

Manuscript received June 21, 1995; revised December 22, 1995. 
.I C Park was with the Naval Undersea Warfare Center, AUTEC Detach- 

ment, West Palm Beach, FL 33401 USA. He is now with the Department of 
Ocean Engineering, Florida Atlantic University, Boca Raton, FL 33432 USA 

R M. Kennedy is with the Naval Undersea Warfare Center, AUTEC 
Detachment, West Palm Beach, FL 33401 USA. 

Publisher Item Identifier S 0364-9059(96)03413-9. 

Neural Networ 
Robert M. Kennedy, Member, IEEE 

provide real-time spatio-temporal characterization of the SSP. 
This is achieved by presenting the remotely measured tomo- 
graphic and temperature information to a multilayer percep- 
tron trained on historical SSP data. Empirical statistics of 
the SSP’s relevant to a given locale can be obtained from 
archval information contained in oceanographic databases. 
Real-time sampling of the SSP is achieved through time- 
of-flight observations using ocean bottom acoustic sensors 
employed in an acoustic tomography structure. Temperature 
data is acquired by measurement of ocean bottom temperature 
from a thermal sensor at the hydrophones, and estimated sea 
surface temperature can be derived from multispectral satellite 
AVHRR (infrared) data. Representation of the SSP is enhanced 
by an efficient parameterization using empirical orthogonal 
functions (EOF’s), which constitute the optimal basis functions 
for expansion of the SSP in the least-squares sense. The task 
of the neural network is efficient and accurate prediction of the 
EOF expansion coefficients based on real-time measurements 
characterizing the state of the environment. 

Application of neural network architectures to the parameter 
estimation of complex multivariate remote sensing problems 
[ 11-[3] has emerged recently as an attractive alternative to 
classical parameter estimation techniques. In a general sense, 
a neural network can be defined as an algorithm which accepts 
an n-dimensional input vector, and provides a functional 
mapping to an rn-dimensional output. The neural network 
is distinct from conventional programming techniques which 
produce functional transformations in that the relationship 
between the input and output vectors is not known a priori. 
The neural network constructs decision boundaries in the 
parameter space as a result of the network seeking an error 
minimum during the training process. Application of the 
trained network then results in an efficient utilization of 
computational resources in producing parameter estimates. 

11. MODEL OF THE SSP 
The model used to represent the SSP data is an expansion 

of orthogonal functions I?,(.) about the background SSP 
M 

Z = 1  

where e,(.) is the mean SSP, and M the number of modal 
functions. The orthogonal functions of interest are obviously 
sound speed perturbations with respect to the mean profile. 
A powerful method of obtaining such functions from a given 
dataset is the method of empirical orthogonal functions (EOF) 
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introduced by Kosambi [4]. (See also Davis [5] and Kundu 
[6].) The efficacy of EOF’s in providing robust estimators for 
functions of sound speed in the ocean has been exploited by 
several authors [7]-[9], with typical results that only two to 
four EOF’s are required for accurate modelinghnversion of 
the sound speed data. 

Empirical orthogonal functions are the eigenvectors of the 
real and symmetric matrix of correlation coefficients. They are 
termed empirical since they are constructed entirely from the 
statistics of the data, and orthogonal because the eigenvalues 
form a diagonal matrix, ensuring statistical independence 
between the eigenvectors. In the present case the correlation 
is one of sound speed between profiles. However, since 
the expansion functions we seek are ones of sound speed 
perturbation, we can remove the mean from each of the 
correlation coefficients and deal with EOF’s of the covariance 
matrix. Therefore the EOF’s satisfy 

RF = AF (2) 

with eigenvalues A,, = Xi&, where 6 is a Kronecker delta 
function and where the entries of the covariance matrix are 
explicitly given by . 

with Nssp the number of SSP profiles in the dataset, i and j 
the depth indexes. The covariance, eigenvalue and eigenvector 
matrices are therefore computable directly from the data, 
leaving the specification of expansion coefficients [ai in (l)] 
to complete the model. 

A. SSP Database 

The World Ocean Atlas (WOA) is a comprehensive database 
of worldwide observed oceanic and interpolated environmental 
parameters covering the time span from 1900 to 1994. The 
database was developed at the Ocean Climate Laboratory of 
the National Oceanographic Data Center (NODC), which is an 
organization of the National Oceanic and Atmospheric Admin- 
istration (NOAA) and the National Environmental Satellite, 
Data and Information Service (NESDIS). The entire data- 
base consists of 2.278 Gbytes of observed data, and 962 
Mbyte’s of “objectively analyzed” data interpolated from the 
observed data to standard depths for one and five degree 
latitude/longitude grid points. A summary of the data available 
on CD-ROM is detailed in [lo]. 

The geographic area of interest is located in the Onslow Bay 
area, some 10-30 nmi off the New RiverKamp Legeune area 
of North Carolina. Specifically, it can be defined by the area 
contained within 33’-34’ N and 76’-77’ W. This is a complex 
coastal ocean environment where the water is composite of 
the Gulfstream, continental inflow from the nearby rivers and 
non-Gulfstream coastal water masses. 

The WOA observed profile data are organized into 10” 
latitude by 10” longitude “squares,” identified according to 
the World Meteorological Organization ( W O )  numbering 
scheme. The corresponding WMO square for the Onslow 
Bay area is numbered 7307. This 10’ square portion of the 

I 
I 
I 

0 

50 

100 

150 

200 

250 

300 
1490 1500 1510 1520 1530 1540 1550 

Sound Speed (mls) 

Fig. 1. 
World Ocean Atlas for the Onslow Bay area under consideration. 

Sixty-five SSP’s computed from observed XBT’s obtained from the 

dataibase was searched for CTD/XBT data which fell within the 
one degree area identified above. In addition to this latitude- 
longitude restriction, profiles were processed only if they 
contained valid observed data to a minimum depth of 300 
m. Out of the 56 225 XBT profiles that were searched, a total 
of 520 met the latitude-longitude and depth criteria. 

The observed CTD data were sparse over the one degree 
SqUiEe and depths of interest, not allowing for the development 
of a meaningful spatio-temporal sample of CTD profiles. 
Instead, the “objectively analyzed” WOA salinity profiles for 
each month of the year were extracted at the center of the 
one degree latitude-longitude square (33”-34’ N:76’-77” W). 
The resulting data exhibited the following statistics over the 
0-300 m water depths: 

Number of points 
Mean Salinity ( S )  = 36.22. 
Standard Deviation (TS = .157. 
Minimum Salinity Smin = 35.67. 
Maximum Salinity S,,, = 36.49. 

N = 144. 

Accordingly, the XBT data were converted into SSP data 
using the mean salinity of 36.2 ppt via the DelGrosso-Mader 
equ,ation [ 1 11. 

The observed XBT data were not sampled at depths which 
were consistent from profile to profile. Therefore, a standard 
set of depths was selected for the representation of the SSP’s 
as follows: from zero depth to 100 m a point was specified 
every 10 m, from 120 to 300 m a point was specified every 20 
m. IEach profile was interpolated to these 21 standard depths 
frorn the observed data by a natural cubic spline. A sample of 
65 resulting SSP profiles which were chosen to uniformly span 
the January to December time frame is shown in Fig. 1. Note 
that the SSP structure is predominantly downward refracting. 

B. Erne-of-Flight 

The fundamental physical measurement that forms the basis 
for prediction of the EOF expansion coefficients in our model 
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Fig. 2. First seven EOF’s of the 520 SSP’s obtained from the WOA for the 
Onslow Bay location. The first five EOF‘s are labeled, and account for 99% 
of the total variance in the data. The EOF’s are scaled by the square root of 
their respective eigenvalues. 

is the acoustic time-of-flight (TOF) between two bottom 
mounted transducers. The TOF is the integral of the sound 
speed “slowness” over the ray path connecting the source and 
receiver 

(4) 

and accurate quantification of the TOF in response to variation 
in c(s) is essential in allowing for sensitive detection of 
features in the EOF coefficient space. Since the EOF’s we 
seek are sound speed variations with respect to the mean SSP, 
the TOF quantity of interest is the time-of-flight difference 
between the mean SSP and the perturbed SSP, given a fixed 
source\receiver geometry. A multipath expansion of the wave 
equation describing the underwater acoustic waveguide was 
implemented to calculate acoustic time-of-flights. Specifically, 
the computer software used was the Generic Sonar Model [ 121. 

C. Computation of EOF’s 
A program to compute the empirical orthogonal functions 

from the 520 SSP dataset was written. The symmetric co- 
variance matrix and mean value of the SSP’s were computed 
for each depth. The Numerical Recipes@ [13] function wed20 
performed a Householder transformation on the covariance 
matrix to reduce it to tridiagonal form, and function tqli() then 
solves for the eigenvalues and eigenvectors. Fig. 2 plots the 
first seven EOF’s for the SSP dataset. Each EOF is scaled by 
the square-root of its eigenvalue, thus weighting the amplitude 
of each EOF corresponding to its strength in contributing to 
the sound speed perturbation, and providing a dimension of 
(&SI. 

The first five modes (in terms of strength) are labeled in 
the Fig. 2, and account for the bulk of the data variance. The 
first and second modes can be observed to dominate the sur- 
face layer variations. Exploiting the fact that the eigenvalues 

represent the portion of variance contributed by each of the 
modes, Table I quantifies the relative importance of the first 
five modes in determining the sound speed variations. 

Based on this information, it is determined sufficient to 
truncate the expansion of (1) at M = 5 .  It is theoretically 
trivial to add additional terms aimed at increasing the accuracy 
of the representation, however, practically, it is advantageous 
to use as few terms as possible to minimize the number of 
expansion coefficients which have to be specified. It is also 
possible that inclusion of higher-order modes would contribute 
only measurement errors and not serve to efficiently represent 
the true variations. 

D. Least Squares Estimate of the EOF Expansion Coeficients 

In order to provide a set of EOF expansion coefficients 
which the neural network requires for training, the EOF 
coefficients are computed for the representative SSP data,by 
a five parameter model fit by least-squares residuals. The 
problem is this: given an observed SSP, and the first five EOF’s 
computed from the observed dataset, what are the five EOF 
expansion coefficients that “best fit” the observed data? 

Since we have chosen to include only five EOF’s in the SSP 
estimates, the sound speed variation A&) is compute1 
the EOF expansion coefficients ai by 

from 

( 5 )  

from which it is clear that the number of depths in the 
profile (N = 21) exceed the number of parameters to be 
estimated ( M  = 5 ) ,  resulting in an overdetermined set of 
linear equations. That is, there will not exist an exact solution 
vector a. Therefore, the objective is to identify a solution 
for the vector a that comes closest to satisfying the ( 5 )  
simultaneously in the least-squares sense. The five parameter 
model is defined as 

5 

z = 1  

where AE(z) is the estimated SSP variation computed with the 
estimated EOF expansion coefficients 8i. The best estimates 
of the five parameters are implemented by minimization of the 
residuals: [Ac(z) - AE(Z) ]~ where Ac(z) is the sound speed 
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Fig. 3. Two SSP’s obtained from the World Ocean Atlas for the Onslow 
Bay location, and the SSP estimates from five EOF‘s fitted as a five parameter 
least-squares model to the data. The February estimate exhibits an RMS sound 
speed error of 0.69 m / s ,  and the July estimate 0.96 m/s. 

variation of the observed profile data with respect to the mean 
SSP. The residuals are minimized by the Numerical Recipes@ 
[ 101 singular value decomposition fitting algorithm svdfito. 

Before presenting the neural network filter structure which 
will make estimates of the EOF expansion coefficients based 
on training with coefficients estimated by the least-squares fit, 
it is appropriate to examine the accuracy of the five coefficient 
EOF model in relation to the observed SSP data. Fig. 3 plots 
comparisons of two observed SSP’s with estimates computed 
from the five EOF’s with coefficients obtained by the least 
squares solution. Profile 480 (July 27) is representative of 
Summer conditions, while profile 302 (February 23) is a 
typical Winter profile. In order to quantify the deviation of the 
predicted SSP from the observed data, the root mean square 
(RMS) error in sound speed over the 21 depths in relation 
to the observed data is computed. This RMS error in sound 
speed is defined by 

111. MULTILAYER PERCEPTRON TO 
PREDICT EOF EXPANSION COEFFICIENTS 

Neural networks are implementations of computational 
algorithms that provide a functional mapping from an n- 
dimensional input to an m-dimensional output space. They 
are loosely based on the information processing structure of 
biologic neurons, and derive their ability to learn complex 
mapping from the interconnection structure and the inherent 
nonlinearity of the individual neurons. All neural networks 
opeirate in two distinct phases. The first is the training phase, 
where the network adjusts its internal parameters in response to 
training data. Second is the predictive phase, where the trained 
network responds to input data and produces a functional 
mapping. Neural networks can be generally classified as 
eithler supervised or unsupervised architectures. Supervised 
paradigms require a “teacher” that produces an error output 
in response to training data, minimization of the error directs 
the learning process and adjustment of the network internal 
parameters. An unsupervised network does not require an 
external error source, but relies on a rule base to adjust the 
internal parameters in response to the network output during 
training. Neural networks can be further classified as either 
feedlforward or feedback types. This refers to the flow of 
information during the predictive phase of operation. Two 
important features of neural networks are that they have the 
ability to generalize, or produce accurate estimates of their 
functional representation in response to inputs that were not 
present in the training data, and that an explicit model, or 
conditional probabilities between the functional input and 
output are not required. 

The perceptron is a supervised feedforward network. It 
requires an error source for the network output in response 
to training data during the learning phase. It is also a feedfor- 
ward architecture, and as such is a computationally efficient 
estimator in the predictive phase. We implement a multilayer 
perceptron to predict the EOF expansion coefficients based 
on the 65 observed SSP’s extracted from the WOA for the 
Onslow Bay site. The network calculates the synaptic weight 
modifications via backpropagation. 

The estimated Summer profile has an RMSssp of 0.96 m/s, 
while the Winter profile RMSssp is 0.69 m/s. The RMSssp 
was computed for each of the representative profiles shown in 
Fig. 1,  and resulted in statistics of 

Number of Profiles 
Mean Error 
Standard Deviation 
Minimum Error 
Maximum Error 

P = 65.  
(FWSssp) = 0.82 m/s. 
CTRMS,,, = 0.34 m/s. 
RMS,,, = 0.21 m/s. 
RMS,, = 2.10 m/s. 

This means that on average, the minimum error RMSssp 
that can be expected from estimates of the SSP’s by a linear 
least-squares fit of the five EOF’s is 0.82 m/s. 

A. A4ultilayer Perceptron Architecture 

The network consists of: seven input units, 20 units in the 
first hidden layer, 20 units in the second hidden layer, and 
five output units as depicted in Fig. 4. The input units are 
represented as circles and simply serve as branch out points 
for each of the input values to the each of the units in the 
first hidden layer. Between each of the units in successive 
layers is a weight represented by a solid line. Units in the 
hidden and output layers are depicted as a squares, and 
perf‘orm computations as follows: Let X ,  = w,?x? represent 
the weighted sum of the multiinputs x3 with wC3 being 
the weighting factor across the interconnection between the 
ith and j th  cells. This summed input is processed by the 
activation function FS to produce the neurons output signal 
0, as depicted by Fig. 5. The activation function provides 
each neuron with a nonlinear transfer function, allowing for 
the processing of large input values without overload, while 
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Fig. 5. A computational unit of the multilayer perceptron. 

simultaneously providing for sensitive response to low-level 
input activity. The activation functions used in hidden layers 
are hyperbolic tangents, and linear in the output layer. The 
linear output activation functions allow the network output 
to converge to values outside of the f l  interval that the 
hyperbolic tangent bounds. The input and hidden layer have an 
additional bias unit clamped to a fixed output of - 1, connected 
to each unit in the succeeding layer through a trainable weight. 

B. Multilayer Perceptron Training 

The objective of the training process is to allow the network 
to learn the functional mapping of the input data to the desired 
output vector. This is achieved by repeatedly presenting to 
the network a known set of inputloutput pairs (training sets), 
and adjusting the weights to minimize some measure of error 
between the desired output and the computed network output. 
In the case of the multilayer perceptron, a conventional error 
minimization approach is backpropagation [ 141, [15]. The 
fundamental quantity used in determination of the weight 
adjustment is the error or distance D of the network output 0, 

of the ith unit from the target value T,. It is used to calculate 
the effective gradient of the weight modification term in the 
backpropagation algorithm. The error metric employed here 
is the Euclidean distance specified by DE = T, - 0,, and 
adjustment of weights at the nth training step is prescribed by 
the Widrow-Hoff delta rule [14] 

w,g (n) = W2J (n  - 1) + rl6J 0% (8) 

where 77 is the learning rate and Sj is the effective gradient. 

C. Training Sets 

Aside from selection of the network architecture, identifica- 
tion of a suitable training set which encompasses the relevant 
feature vectors of the transformation to be learned is the 
most critical step of network design. Addressing this problem 
involves conducting a sensitivity study to identify which 
parameters available in the training data can be effectively 
utilized by the network to characterize the desired transfor- 
mation. Another concern is the sensitivity of the network to 
the numerical magnitudes of the training set. For example, 
if the desired output values of the network are all close to 
zero, then the learning rule (8) will not be effective since 
the magnitude of the weight change is proportional to the 
value of the network output. Also, if the value of the network 
inputs are close to zero, the weights connecting these inputs 
to subsequent processing units will have little consequence. 
In fact, clamping the input value of a parameter to zero is a 
method employed in the sensitivity study to selectively remove 
network inputs without reconfiguring the network architecture. 

The input training data available in the present case is lim- 
ited by the measurement resources available in the operating 
area. This study assumes that the measurements available are: 
1) Time quantified as a day-of-year in the interval [l-3651, 
2) ocean bottom temperature, 3) sea surface temperature, 
and 4) acoustic time-of-flight between two bottom mounted 
transducers. Further, to conform to the average depth of the 
area under consideration, the bottom depth is taken as 300 m 
and the sensor separation as 5000 m. Computation of acoustic 
eigenrays from the mean and representative SSP’s reveal that 
four acoustic paths dominate the multipath structure for much 
of the year: 1) a refracted direct path designated as [ 1 V 01, the 
1 V indicating an upper vertexing ray, and the zero referring 
to no bottom vertexes or reflections, 2) a surface reflected ray 
[l 01, 3) a surface-bottom-surface reflected path [2 11, and 4) 
a bottom reflected path with two upper vertexes [2 V 11. 

The objective of the network implementation is to predict 
the EOF expansion coefficients of (3) which are the coef- 
ficients of sound speed variation with respect to the mean 
SSP. Accordingly, the mean values of temperature, and time- 
of-flight for each acoustic path contribute only a bias term 
to the respective input feature vectors, therefore, these mean 
values are removed from the input temperature and time-of- 
flight data. The complete set of input parameters available is 
therefore a vector of length seven consisting of the time, two 
temperature variations, and four acoustic TOF variations. 

Out of the 520 SSP’s that met the 1atitudeAongitude and 
depth criteria, a subset of 65 profiles were chosen to uniformly 
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Fig. 6. 
perceptron. 

Input training set: A temperatures and time-of-year for the multilayer 

span the January to December time frame (Fig. 1) and are 
intended to form a suitable basis for a training set. The 
seven input parameters were extracted from the 65 SSP's 
as follows: The time parameter should conform to a cyclic 
function of period one year. Several periodic functions were 
evaluated for this purpose: a ramp, sawtooth, and sine wave. 
The sine wave function produced the lowest RMS error of 
network training output for equivalent network configurations. 
Therefore, the time is parameterized as time-of-year = sin( 27r 
day-of-yead365). The temperature variations were extracted 
from the observed XBT data at the surface and bottom points. 
The magnitude of the temperature variations fell within f6"C. 
The multipath TOF's were computed by the Generic Sonar 
Model for each of the 65 SSP's. The mean SSP (of the 520 
computed SSP's) was used to compute the mean TOF for 
each multipath, which was removed from the 65 training set 
TOF's to produce the multipath TOF variations (ATOF). The 
magnitude of the TOF variations were less than 0.04. Based 
on the small magnitude of these variations, the ATOF's were 
scaled by a factor of 100 to span the interval f 4 .  

Fig. 6 plots the time-of-year parameter and temperature 
variations versus the day-of-year for the 65 SSP's of the 
network input training set. The surface temperature variation 
resembles a periodic function of time, with the maximum 
and minimum variations following the summer and winter 
seasons. Fig. 7 presents the scaled ATOF's for each of the 
dominant multipaths. It is difficult to discern any clear pattern 
of temporal variation from this data, although the surface 
reflected path (1 0) does indicate a somewhat cyclic pattern. 
Note that the higher order multipaths (2  1) and (2  V 1) are not 
present in all of the data. Figs. 6 and 7 constitute the complete 
set of network input training data available to the network. 

The network output training set consists of the five EOF 
coefficients associated with each of the 65 observed SSP's. 
The EOF coefficients were solved as a five parameter linear 
least-squares fit of the EOF basis functions to the 65 observed 
SSP's. Owing to the large variance of the low order EOF's, 
the resulting magnitude of coefficients was in the range of 
[ -0.1- 0.151. To avoid training the network to these small 

0 30 60 90 120 150 180 210 240 270 300 330 360 
Day of Year 

Fig. 7. Input training set: Multipath ATOF's for the multilayer perceptron. 
The computed TOF's have been scaled by a factor of 100. The acoustic paths 
are: (1 V O)direct,  (1  O)-surface reflection, (2 1)-2 surface one bottom 
reflection, (2 V 1)-bottom-reflection. 

target values, the EOF's were scaled by 0.01, resulting in 
the coefficients being scaled by a factor of 100. Fig. 8 plots 
the resulting EOF coefficients and constitutes the network 
output training set (target values). Except for the sea-surface 
temperature, and marginally for the reflected acoustic time- 
of-fllights, the environmentally derived training data does not 
exhibit the temporal regularity that one might expect. This 
may be a reflection of the dynamic nature of the interacting 
water masses in Onslow Bay. 

D. Sensitivity Study 
The objective of the sensitivity study is to identify the 

information content of the input parameters in relation to 
the networks ability to learn the output transformation as 
efficiently and accurately as possible. It is conducted by 
training the network with various combinations of the input 
parameters and identifying the combination which produces 
the fastest convergence and minimum output error. Another 
goall is to identify whether or not inclusion of additional 
training information can improve the network performance 
based on inputs that are not included in the training data. That 
is, what effect does the information content of the training 
set have on the ability of the network to generalize based 
on what it has learned from training? The generalization 
capability is of central importance since the utility of the 
network ultimately lies in producing accurate estimates based 
on iinknown (untrained) input data. This is accomplished by 
training the network with subsets of the training set, and 
observing the trained networks output error for untrained 
inputs. Each of these endeavors might identify changes to 
the network architecture. The former will indicate if any of 
the input units can be removed from the network, while the 
latter may mandate increasing the hidden layer structure and 
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Fig. 8. Output training set: EOF coefficients computed from a five parameter 
linear least-squares fit of the EOF's to the observed SSP's. The EOF's were 
scaled by 0.01. 

number of intermediate weights to accommodate learning a 
larger training set. 

1)  Input Parameter Sensitivity: To perform the input pa- 
rameter sensitivity study, the contribution of an input param- 
eter is controlled by either obtaining its value from the input 
training set or clamping its input value to zero. The weights 
and thresholds are initialized to psuedorandom uniform values 
over [-1, 11, and this same set of random initializations is 
used for each network configuration. A learning rate coefficient 
of 0.002 is used. Since the purpose is to asses the utility 
of each of the input parameters to the learning process, 
it is not necessary to fully train the network for optimum 
prediction performance which typically requires thousands of 
iterations. It is only required that the error minimization seek 
out the local parameter space of the global error minimum, 
which was observed to occur within 200 iterations for all 
network configurations. The network is therefore sequentially 
presented the 65 training sets for 250 iterations. The RMS 
error between the desired output and network computation 
(RMS,) is recorded for each input parameter configuration 
at the conclusion of training. This error quantifies the average 
deviation of the M = 5 predicted EOF expansion coefficients 
from those of the target set, averaged over the P = 65 training 
sets as follows 

I - 

Table I1 summarizes the input parameter combinations and 
resultant RMS errors in prediction of the five EOF expansion 
coefficients. A check mark indicates that the input parameter 
was included in the network configuration. 

TABLE I1 
INPUT PARAMETER SENSITIVITY STUDY 

Time 1 Surface I Bottom I 1VO 1 1 0  I 2 1 1 ZV 1 I RMS, 

The first line of Table I1 represents the result of presenting 
the full input training set to the network. Lines 2-5 sequentially 
remove the tomographic information presented as input for the 
four acoustic multipaths. Lines 6 and 7 indicate results for 
removal of the reflected and refracted eigenrays respectively, 
while lines 8-10 isolate effects of withholding the time-of- 
year, bottom and surface temperature variations respectively. 

Inspection of the RMS errors as a function of the tomo- 
graphic input (rows 2-7) reveals two important conclusions. 
First, removal of the TOF variation for the surface-bottom- 
surface [2 11 reflected eigenray has the greatest detrimental 
effect on network accuracy. This is expected since this acoustic 
path provides the most complete sampling of the vertical SSP 
structure. 

Second, removal of the refracted bottom-reflected path 
[ 2  V 11 results in the smallest RMS prediction error of any 
of the input parameter configurations. This means that the 
tomographic information contained in this eigenray was serv- 
ing to confuse the network in learning the desired functional 
mapping. It indicates that the data from the [2 V 11 eigen- 
ray is adding more noise than information in deciding the 
optimal network output. This is consistent with the fact that 
this eigenray propagates nearly horizontally, and samples on 
average only the lower 33 meters of the water column, thereby 
missing information contained in the crucial near surface area. 

The results presented in lines 8 and 10 provide additional 
insights to the sensitivity of the network inputs. They indicate 
that the surface temperature variation is the single most 
influential input parameter in the learning, while the time-of- 
year also contributes largely to accurate functional mapping. 
Based on the results presented in lines 2-10, combinations 
of input parameters which excluded the less important inputs 
were tried in order to identify if a reduction in input parameters 
could be found that would not adversely affect the network 
error. The results of three such combinations are presented 
in lines 11-13, where the reduction in inputs only served to 
increase the network error. 

The results of the input parameter sensitivity study reveal 
that the bottom refracted tomographic input available from 
the complete training set was increasing the RMS error of the 
network output. Accordingly, the network was reconfigured 

\ 
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205 
267 
327 

223 

1.59 2.41 0.96 2.51 0.75 
6.17 5.53 2.42 1.11 0.64 
6.93 3.35 3.82 1.89 0.72 

TABLE I11 
RMS ERROR (RMSssp) IN NETWORK PREDICTION OF SIX SSP’s NOT INCLUDED 
IN THE TRAINING SET, FOR TRAINING SETS OF SIZE 65, 55, 45, AND 35, AND FOR 
A FIVE PARAMETER LINEAR LEAST-SQUARES Fm OF E O F S  TO THE SIX SSP’S 

11 Number of Training Sets 11 
~~4 1 35 I 45 I 55- 1 65 1 EOFLeast 
Day Squares Fit 

6.07 4.28 3.93 4.34 1.26 
108 3.90 9.99 4.59 3.81 0.69 

6.53 4.25 4.94 4.35 0.86 

1 5.20 I 4.97 I 3.28 I 3.00 11 
to accept an input vector of six parameters, and all following 
results were obtained from such a configuration. 

2) Training Set Sensitivity: To investigate the information 
content of the representative SSP’s selected for the network 
training set, the network was trained for 3000 iterations 
with identical weight and threshold initializations for the 
full 65 SSP training set, and subsets consisting of 55, 45, 
and 35 training sets selected at random. Six profiles which 
were not included in the training set were chosen from 
the database and were used to generate input data for the 
trained networks. The six profiles were selected to span 
the entire year, and are delineated by the day-of-year on 
which they were measured (45, 108, 154, 205, 267, and 
327). The trained networks were then presented the input 
data from the six “unknown” profiles, and used to estimate 
the corresponding EOF expansion coefficients. The predicted 
SSP’s were constructed from the EOF’s, and the RMS error 
of the estimated profile with respect to the observed data 
(RMSssp) calculated. These errors are presented in Table I11 
along with a comparison to the error of the five parameter 
linear least-squares fit of the EOF’s to the observed profiles. 

The results of Table I11 show that averaged over the six un- 
trained profiles, the RMS error in prediction of SSP’s decreases 
as the number of training sets is increased. This indicates that 
the training set may have not yet reached its full potential in 
providing information usable to the network concerning the 
transformation of the statistical and environmental inputs into 
appropriate EOF coefficients. It is also observed that the error 
for the full training set condition is roughly two to five times 
that of a five parameter linear least-squares fit of the EOF’s to 
the SSP’s. This also suggests that the network training set is 
incomplete. However, it can be seen that use of the full training 
set does not ensure the minimum error prediction for each of 
the profiles. Specifically, the profile of day 205 was optimally 
predicted by the network trained with 55 sets instead of the 
available 65. This illustrates the sensitive interdependence 
between the generalization capabilities of neural networks 
and the ability of the network to accurately learn the desired 
functional transformation based on the information content of 
the training data. 

E. Neural Network SSP Prediction 

Fig. 9 presents SSP predictions for six sets of input pa- 
rameters derived from profiles that were not included in the 
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Neural network prediction of six S S P ’ s  not included in the training 

training set. The network was trained for 3000 iterations with 
the full training set, and the resulting RMS error of the five 
EO€: expansion coefficients over the 65 training profiles was 
RMS, = 0.077. The error in sound speed (RMSssp) for each 
of the profiles is tabulated in the 65 training set column of 
Table 111. 

IV. CONCLUSION 
A multilayer perceptron neural network has been imple- 

mented to predict ocean sound speed profiles based on the 
input of remotely sensed acoustic tomographic, and ocean 
boundary temperature data. Empirical orthogonal functions of 
sound speed variation were computed from a historic sound 
speed profile database, and a truncated series of the orthogonal 
functions form the basis of the predictive model. The remotely 
sensed environmental data specifies the boundary conditions, 
and allows the trained network to estimate the series coef- 
ficients based on generalization of the learned input\output 
transformation. 

An attractive aspect of the perceptron neural network is 
the computational efficiency with which SSP predictions can 
be made once the network is trained and the input data for 
a prediction are collected. All that is required is to present 
the input data to the trained network, process one forward 
sweep through the network, and implement the EOF expansion 
coefficients to construct an SSP estimate. The computational 
burden arises from training of the network, during which 
feedback error from the network output is minimized over 
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the training set. Construction of the training set may require 
significant work to process and identify the sensitive input 
parameters, and may serve to adjust the configuration of the 
network itself. 

Network predictions on untrained input parameters pro- 
duced RMS errors over the depth of the profiles in the range 
of 1.14.4 m/s. A linear least-squares fit of the basis functions 
to these profiles resulted in FWS errors from 0.7 to 1.3 m/s, 
indicating that the network architectureltraining data were not 
fully optimized to the desired transformation. A sensitivity 
study of the information available in the network training 
set revealed that the surface temperature, time-of-year, and 
acoustic time-of-flight from the eigenray which maximally 
samples the vertical sound speed structure were of primary 
importance in learning the desired transformation. It was 
also shown that the time-of-flight from a downward refracted 
bottom reflection path was serving to confuse the network and 
decrease the training efficacy. 

The above results demonstrate that realization of real- 
time SSP estimates in a complex coastal environment based 
on input of remotely sensed data to a neural network are 
feasible, however, two limitations related to the physical 
significance of the proposed method should be mentioned. 
First is the assumption that the mean values of temperature 
and acoustic time-of-flight which were removed from the 
training data are stable. Temperature dependent geophysical 
ocean parameters are expected to have time-dependent means, 
and so the significance of assuming that the means were stable 
over the period of the historic database should be assessed. 
Second is the use of a range-independent acoustic model for 
computation of the time-of-flights. Since the site investigated 
in this work is near both the continent and the Gulfstream, 
a range dependent model which could incorporate sea-surface 
temperature and bottom tomography variations between the 
acoustic sensors should be explored. 
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