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Remote Sensing of Ocean Sound Speed Profiles
by a Perceptron Neural Network

Joseph C. Park, Member, IEEE, and Robert M. Kennedy, Member, IEEE

Abstract—A method is developed to estimate ocean sound speed
profiles through synthesis of remotely measured environmental
data and historical statistics of sound speed obtained at the
remotely sensed location. Sound speed profiles are represented
by an expansion of empirical orthogonal functions (EOF) of
the historical sound speed variation, while the remotely sensed
environmental data provide real-time information to determine
the expansion coefficients. Environmental inputs are limited to
sea surface temperature available from satellite infrared sensors,
acoustic time-of-flight and ocean bottom temperature measurable
from bottom mounted acoustic and thermal transducers. A mul-
tilayer perceptron neural network is implemented to learn the
functional transformation from the measured environmental in-
put to the desired EOF coefficient output on a set of representative
sound speed profiles. Sea surface temperature, time-of-year, and
time-of-flight from the acoustic multipath that maximally samples
the vertical sound speed are found to be the dominant inputs.
The trained network is computationally efficient and produces
estimates for untrained environmental inputs with a mean error
of 1.1-4.4 m/s.

1. INTRODUCTION

N ocean acoustics applications, uncertainty in quantification

of environmental parameters often presents a fundamental
limitation to the utility of the acoustic measurement/prediction
problem at hand. In the case of acoustic vehicle tracking,
accurate spatio-temporal quantification of the sound speed
profile (SSP) is crucial to the quality of the tracking solution.
It is also accepted that accuracy of matched field processing
structures- are intimately tied to the environmental mismatch
of the replica field. Often, the only resource available to
sample the acoustically important environmental parameters
relies on deployment of mechanical sensors such as expend-
able bathythermographs (XBT’s) or conductivity-temperature-
depth .(CTD) probes. To obtain at-sea environmental data
over a large spatial extent within a small time window with
such mechanical devices is inherently costly and potentially
hazardous in heavy weather. This paper demonstrates the feasi-
bility of realizing a remote-sensing SSP monitoring system for
locations where multiple bottom mounted acoustic/temperature
sensors are installed, such as at existing deep water and
planned shallow water Navy underwater tracking ranges.

The approach is based on integration of remotely sensed
environmental data with empirical statistics of the SSP to
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provide real-time spatio-temporal characterization of the SSP.
This is achieved by presenting the remotely measured tomo-
graphic and temperature information to a multilayer percep-
tron ftrained on historical SSP data. Empirical statistics of
the SSP’s relevant to a given locale can-be obtained from
archival information contained in oceanographic databases.
Real-time sampling of the SSP is achieved through time-
of-flight observations using océan bottom acoustic sensors
employed in an acoustic tomography structure. Temperature
data is acquired by measurement of ocean bottom temperature
from a thermal sensor at the hydrophones, and estimated sea
surface temperature can be derived from multispectral satellite
AVHRR (infrared) data. Representation of the SSP is enhanced
by an efficient parameterization using empirical orthogonal
functions (EOF’s), which constitute the optimal basis functions
for expansion of the SSP in the least-squares sense. The task
of the neural network is efficient and accurate prediction of the
EOF expansion coefficients based on real-time measurements
characterizing the state of the environment. , ‘
Application of neural network architectures to the parameter
estimation of complex multivariate remote. sensing problems
[11-{3] has emerged recently as an ‘attractive alternative to
classical parameter estimation techniques. In a general sense,
a neural network can be defined as an algorithm which accepts
an - n-dimensional input vector, and provides a functional
mapping to an m-dimensional output. The neural network
is distinct from conventional programming techniques which
produce functional transformations in that the relationship
between the input and output vectors is not known a priori.
The neural network constructs decision boundaries in the
parameter space as a result of the network seeking an error
minimum during the training process. Application of the
trained network then results in an efficient utilization of
computational resources in producing parameter estimates.

II. MODEL OF THE SSP

The model used to represent the SSP data is an expansion
of orthogonal functions F;(z) about the background SSP

M .
o(2) = colz) + Z 0 Fi(2) 6}

7

where ¢,(z) is the mean SSP, and M the number of modal

_ functions. The orthogonal functions of interest are obviously

sound speed perturbations with respect to the mean profile.
A powerful method of obtaining such functions from a given
dataset is the method of empirical orthogonal functions (EOF)
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introduced by Kosambi [4]. (See also Davis [5] and Kundu
[6].) The efficacy of EOF’s in providing robust estimators for
functions of sound speed in the ocean has been exploited by
several authors [7]-[9], with typical results that only two to
four EOF’s are required for accurate modeling/inversion of
the sound speed data.

Empirical orthogonal functions are the eigenvectors of the
real and symmetric matrix of correlation coefficients. They are
termed empirical since they are constructed entirely from the
statistics of the data, and orthogonal because the eigenvalues
form a diagonal matrix, ensuring statistical independence
between the eigenvectors. In the present case the correlation
is one of sound speed between profiles. However, since
the expansion functions we seek are ones of sound speed
perturbation, we can remove the mean from each of the
correlation coefficients and deal with EOF’s of the covariance
matrix. Therefore the EOF’s satisfy

-RF = AF )
with eigenvalues A;; = A;d;; where 6 is a Kronecker delta
function and where the entries of the covariance matrix are
explicitly given by |

1 Nssp
Ri; = Nesp ; [en(2i) = colzi)llen(25) — co(z7)]  (3)

with Ngsp the number of SSP profiles in the dataset, ¢ and j
the depth indexes. The covariance, eigenvalue and eigenvector
matrices are therefore computable directly from the data,
leaving the specification of expansion coefficients [e; in (1)]
to complete the model.

A. SSP Database

The World Ocean Atlas (WOA) is a comprehensive database
of worldwide observed oceanic and interpolated environmental
parameters covering the time span from 1900 to 1994. The
database was developed at the Ocean Climate Laboratory of
the National Oceanographic Data Center (NODC), which is an
organization of the National Oceanic and Atmospheric Admin-
istration (NOAA) and the National Environmental Satellite,
Data and Information Service (NESDIS). The entire data-
base consists of 2.278 Gbytes of observed data, and 962
Mbyte’s of “objectively analyzed” data interpolated from the
observed data to standard depths for one and five degree
latitude/longitude grid points. A summary of the data available
on CD-ROM is detailed in [10].

The geographic area of interest is located in the Onslow Bay
area, some 10-30 nmi off the New River/Camp Legeune area
of North Carolina. Specifically, it can be defined by the area
contained within 33°-34° N and 76°-77° W. This is a complex
coastal ocean environment where the water is composite of
the Gulfstream, continental inflow from the nearby rivers and
non-Gulfstream coastal water masses.

The WOA observed profile data are organized into 10°
latitude by 10° longitude “squares,” identified according to
the World Meteorological Organization (WMO) numbering
scheme. The corresponding WMO square for the Onslow
Bay area is numbered 7307. This 10° square portion of the
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Fig. 1. Sixty-five SSP’s computed from observed XBT’s obtained from the

World Ocean Atlas for the Onslow Bay area under consideration.

database was searched for CTD/XBT data which fell within the
one degree area identified above. In addition to this latitude-
longitude restriction, profiles were processed only if they
contained valid observed data to a minimum depth of 300
m. Out of the 56225 XBT profiles that were searched, a total
of 520 met the latitude-longitude and depth criteria.

The observed CTD data were sparse over the one degree
square and depths of interest, not allowing for the development
of a meaningful spatio-temporal sample of CTD profiles.
Instead, the “objectively analyzed” WOA salinity profiles for
each month of the year were extracted at the center of the
one degree latitude-longitude square (33°-34° N:76°-77° W).
The resulting data exhibited the following statistics over the
0-300 m water depths:

Number of points N = 144.
Mean Salinity (S) = 36.22.
Standard Deviation og = .157.
Minimum Salinity ~ Spmin = 35.67.
Maximum Salinity Spax = 36.49.

Accordingly, the XBT data were converted into SSP data
using the mean salinity of 36.2 ppt via the DelGrosso—Mader
equation [11]. :

The observed XBT data were not sampled at depths which
were consistent from profile to profile. Therefore, a standard
set of depths was selected for the representation of the SSP’s
as follows: from zero depth to 100 m a point was specified
every 10 m, from 120 to 300 m a point was specified every 20
m. Each profile was interpolated to these 21 standard depths
from the observed data by a natural cubic spline. A sample of
65 resulting SSP profiles which were chosen to uniformly span
the January to December time frame is shown in Fig. 1. Note
that the SSP structure is predominantly downward refracting.

B. Time-of-Flight
The fundamental physical measurement that forms the basis
for prediction of the EOF expansion coefficients in our model
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Fig. 2. First seven EOF’S of the 520 SSP’s obtained from the WOA for the
Onslow Bay location. The first five EOF’s are labeled, and account for 99%

of the total variance in the data. The EOF’s are scaled by the square root of
their respective eigenvalues.

is the acoustic time-of-flight (TOF) between two bottom
mounted transducers. The TOF is the integral of the sound
speed “slowness” over the ray path connecting the source and

receiver
ds
ke @

and accurate quantification of the TOF in response to variation
in ¢(s) is essential in allowing for sensitive detection of
features in the EOF coefficient space. Since the EOF’s we
seek are sound speed variations with respect to the mean SSP,
the TOF quantity of interest is the time-of-flight difference
between the mean SSP and the perturbed SSP, given a fixed
source\receiver geometry. A multipath expansion of the wave
equation describing the underwater acoustic waveguide was
implemented to calculate acoustic time-of-flights. Specifically,
the computer software used was the Generic Sonar Model [12].

C. Computation of EOF’s

A program to compute the empirical orthogonal functions
from the 520 SSP dataset was written. The symmetric co-
variance matrix and mean value of the SSP’s were computed
for each depth. The Numerical Recipes® [13] function tred2()
performed a Householder transformation on the covariance
matrix to reduce it to tridiagonal form, and function tgli() then
solves for the eigenvalues and eigenvectors. Fig. 2 plots the
first seven EOF’s for the SSP dataset. Each EOF is scaled by

 the square-root of its eigenvalue, thus weighting the amplitude
of each EOF corresponding to its strength.in contributing to
the sound speed perturbation, and providing a dimension of
(m/s).

The first five modes (in terms of strength) are labeled in
the Fig. 2, and account for the bulk of the data variance. The

-first and second modes can be observed to dominate the sur-
face layer variations. Exploiting the fact that the eigenvalues
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TABLE I -
PERCENT OF VARIANCE CONTRIBUTED TO THE TOTAL SOUND SPEED
VARIATION BY SUCCESSIVE INCLUSION OF THE FIRST FIVE EOF’S/

#EOFs | %Variance

76.40
92.20
96.85
98.47
99.03

e W N e

represent the portion of variance contributed by each of the -
modes, Table I quantifies the relative importance of the first
five modes in determining the sound speed variations. ,

Based on this information, it is determined sufficient to
truncate the expansion of (1) at M = 5. It is theoretically
trivial to add additional terms aimed at increasing the accuracy
of the representation, however, practically, it is advantageous
to use as few terms as possible to minimize the number of
expansion coefficients which have to be specified. It is also
possible that inclusion of higher-order modes would contribute
only measurement errors and not serve to efficiently represent
the true variations. ' '

D. Least Squares Estimate of the EOF Expansion Coefficients

In order to provide a set of EOF expansion coefficients
which the neural network requires for training, the EOF
coefficients are computed for the representative SSP data by
a five parameter model fit by least-squares residuals. The
problem is this: given an observed SSP, and the first five EOF’s
computed from the observed dataset, what are the five EOF
expansion coefficients that “best fit” the observed data?

Since we have chosen to include only five EOF’s in the SSP
estimates, the sound speed variation Ac(z) is computed from
the EOF expansion coefficients o; by '

Ac(z) Fin Fyy Fai Fun Fs »
' o e |
=1 . ‘ . . el ©
. ’ . . . . . a4
Ac(zy) Fiy Foy Fan Fyy Finl'™

from which it is clear that the number of depths -in the
profile (VN = 21) exceed the number of parameters to be
estimated (M = 5), resulting in an overdetermined set of
linear equations. That is, there will not exist an exact solution
vector «. Therefore, the objective is to identify a solution
for the vector o that comes closest to satisfying the (5)
simultaneously in the least-squares sense. The five parameter

model is defined as )

Aé(z) = Z &; Fy(2) ©

where Aé(z) is the estimated SSP variation computed with the
estimated EOF expansion coefficients &;. The best estimates
of the five parameters are implemented by minimization of the
residuals: [Ac(z) — Aé(2)]? where Ac(z) is the sound speed ‘
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Fig. 3. Two SSP’s obtained from the World Ocean Atlas for the Onslow
Bay location, and the SSP estimates from five EOF’s fitted as a five parameter
least-squares model to the data. The February estimate exhibits an RMS sound
speed error of 0.69 m/s, and the July estimate 0.96 m/s.

variation of the observed profile data with respect to the mean
SSP. The residuals are minimized by the Numerical Recipes®
[10] singular value decomposition fitting algorithm svdfit().

Before presenting the neural network filter structure which
will make estimates of the EOF expansion coefficients based
on training with coefficients estimated by the least-squares fit,
it is appropriate to examine the accuracy of the five coefficient
EOF model in relation to the observed SSP data. Fig. 3 plots
comparisons of two observed SSP’s with estimates computed
from the five EOF’s with coefficients obtained by the least
squares solution. Profile 480 (July 27) is representative of
Summer conditions, while profile 302 (February 23) is a
typical Winter profile. In order to quantify the deviation of the
predicted SSP from the observed data, the root mean square
(RMS) error in sound speed over the 21 depths in relation
to the observed data is computed. This RMS error in sound
speed is defined by

N

¥ o lez) - ).

i=1

RMSggp = @

The estimated Summer profile has an RMSsgp of 0.96 m/s,
while the Winter profile RMSsgp is 0.69 m/s. The RMSgsp
was computed for each of the representative profiles shown in
Fig. 1, and resulted in statistics of

Number of Profiles P = 65.

Mean Error (RMSggp) = 0.82 m/s.
Standard Deviation oRrwms,,, = 0.34 m/s.
Minimum Error RMShin = 0.21 m/s.
Maximum Error RMShax = 2.10 m/s.

This means that on average, the minimum error RMSsgsp
that can be expected from estimates of the SSP’s by a linear
least-squares fit of the five EOF’s is 0.82 m/s,
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III. MULTILAYER PERCEPTRON TO
PREDICT EOF EXPANSION COEFFICIENTS

Neural networks are implementations of computational
algorithms that provide a functional mapping from an n-
dimensional input to an m-dimensional output space. They
are loosely based on the information processing structure of
biologic neurons, and derive their ability to learn complex
mapping from the interconnection structure and the inherent
nonlinearity of the individual neurons. All neural networks
operate in two distinct phases. The first is the training phase,
where the network adjusts its internal parameters in response to
training data. Second is the predictive phase, where the trained
network responds to input data and produces a functional
mapping. Neural networks can be generally classified as
either supervised or unsupervised architectures. Supervised
paradigms require a “teacher” that produces an error output
in response to training data, minimization of the error directs
the learning process and adjustment of the network internal
parameters. An unsupervised network does not require an
external error source, but relies on a rule base to adjust the
internal parameters in response to the network output during
training. Neural networks can be further classified as either
feedforward or feedback types. This refers to the flow of
information during the predictive phase of operation. Two
important features of neural networks are that they have the
ability to generalize, or produce accurate estimates of their
functional representation in response to inputs that were not
present in the training data, and that an explicit model, or
conditional probabilities between the functional input and
output are not required.

The perceptron is a supervised feedforward network. It
requires an error source for the network output in response
to training data during the learning phase. It is also a feedfor-
ward architecture, and as such is a computationally efficient
estimator in the predictive phase. We implement a multilayer
perceptron to predict the EOF expansion coefficients based
on the 65 observed SSP’s extracted from the WOA for the
Onslow Bay site. The network calculates the synaptic weight
modifications via backpropagation.

A. Multilayer Perceptron Architecture

The network consists of: seven input units, 20 units in the
first hidden layer, 20 units in the second hidden layer, and-
five output units as depicted in Fig. 4. The input units are
represented as circles and simply serve as branch out points
for each of the input values to the each of the units in the
first hidden layer. Between each of the units in successive
layers is a weight represented by a solid line. Units in the
hidden and output layers are depicted as a squares, and
perform computations as follows: Let X; = ) w;;x; represent
the weighted sum of the multiinputs x; with w;; being
the weighting factor across the interconnection between the
¢th and jth cells. This summed input is processed by the
activation function Fs to produce the neurons output signal
O; as depicted by Fig. 5. The activation function provides
each neuron with a nonlinear transfer function, allowing for
the processing of large input values without overload, while
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Fig. 5. A computational unit of the multilayer perceptron.

simultaneously providing for sensitive response to low-level
input activity. The activation functions used in hidden layers
are hyperbolic tangents, and linear in the output layer. The
linear output activation functions allow the network output
to converge to values outside of the +1 interval that the
hyperbolic tangent bounds. The input and hidden layer have an
additional bias unit clamped to a fixed output of —1, connected
to each unit in the succeeding layer through a trainable weight.

B. Multilayer Perceptron Training

The objective of the training process is to allow the network
to learn the functional mapping of the input data to the desired
output vector. This is achieved by repeatedly presenting to
the network a known set of input/output pairs (training sets),
and adjusting the weights to minimize some measure of error

between the desired output and the computed network output.

In the case of the multilayer perceptron, a conventional error

minimization approach is backpropagation [14], {15]. The
fundamental quantity used in determination of the weight
adjustment is the error or distance D of the network output O;
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of the 7th unit from the target value T;. It is used to calculate
the effective gradient of the weight modification term in the
backpropagation algorithm. The error metric employed. here
is the Euclidean distance specified by Dp = T; — O;, and
adjustment of weights at the nth training step is prescribed by
the Widrow—Hoff delta rule [14]

wig(n) = wign — 1) + 08,0 )

where 7 is the learning rate and §; is the effective gradient,

C. Training Sets

Aside from selection of the network architecture, identifica-
tion of a suitable training set which encompasses ‘the relevant
feature vectors of the transformation to be learned is the
most critical step of network design. Addressing this problem
involves conducting a sensitivity study to identify which
parameters available in the training data can be effectively
utilized by the network to characterize the desired transfor-
mation. Another concern is the sensitivity of the network to
the numerical magnitudes of the training set. For example,-
if the desired output values of the network are all close to
zero, then the learning rule (8) will not be effective since
the magnitude of the weight change is proportional to the
value of the network output. Also, if the value of the network
inputs are close to zero, the weights connecting these inputs
to subsequent processing units will have little consequence.
In fact, clamping the input value of a parameter to zero is a
method employed in the sensitivity study to selectively remove
network inputs without reconfiguring the network architecture.

The input training data available in the present case is lim-
ited by the measurement resources available in the operating
area. This study assumes that the measurements available are:
1) Time quantified as a day-of-year in the interval [1-365],
2) ocean bottom temperature, 3) sea surface temperature,
and 4) acoustic time-of-flight between two bottom mounted
transducers. Further, to conform to the average depth of the
area under consideration, the bottom depth is taken as 300 m
and the sensor separation as 5000 m. Computation of acoustic
eigenrays from the mean and representative SSP’s reveal that
four acoustic paths dominate the multipath structure for much
of the year: 1) a refracted direct path designated as [1 V 0}, the
1 V indicating an upper vertexing ray, and the zero referring
to no bottom vertexes or reflections, 2) a surface reflected ray
[1 0], 3) a surface-bottom-surface reflected path [2 1], and 4)
a bottom reflected path with two upper vertexes [2 V 1].

The objective of the network implementation is to predict
the EOF expansion coefficients of (3) which are the coef-
ficients of sound speed variation with respect to the mean
SSP. Accordingly, the mean values of temperature, and time-
of-flight for each acoustic path contribute only a bias term
to the respective input feature vectors, therefore, these mean
values are removed from the input temperature and time-of-
flight data. The complete set of input parameters available is
therefore a vector of length seven consisting of the time, two
temperature variations, and four acoustic TOF wvariations.

Out of the 520 SSP’s that met the latitude/longitude and
depth criteria, a subset of 65 profiles were chosen to uniformly
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Fig. 6. Input training set: A temperatures and time-of-year for the multilayer
perceptron.

span the January to December time frame (Fig. 1) and are
intended to form a suitable basis for a training set. The
seven input parameters were extracted from the 65 SSP’s
as follows: The time parameter should conform to a cyclic
function of period one year. Several periodic functions were
evaluated for this purpose: a ramp, sawtooth, and sine wave.

The sine wave function produced the lowest RMS error of"

network training output for equivalent network configurations.
Therefore, the time is parameterized as time-of-year = sin(27
day-of-year/365). The temperature variations were extracted
from the observed XBT data at the surface and bottom points.
The magnitude of the temperature variations fell within +6°C.
The multipath TOF’s were computed by the Generic Sonar
Model for each of the 65 SSP’s. The mean SSP (of the 520

computed SSP’s) was used to compute the mean TOF for-

each multipath, which was removed from the 65 training set
TOF’s to produce the multipath TOF variations (ATOF). The
magnitude of the TOF variations were less than 0.04. Based

on the small magnitude of these variations, the ATOF’s were.

scaled by a factor of 100 to span the interval 34.

Fig. 6 plots the time-of-year parameter and temperature
variations versus the day-of-year for the 65 SSP’s of the
network input training set. The surface temperature variation
resembles a periodic function of time, with the maximum
and minimum variations following the summer and winter
seasons. Fig. 7 presents the scaled ATOF’s for each of the
dominant multipaths. It is difficult to discern any clear pattern
of temporal variation from this data, although the surface
reflected path (1 0) does indicate a somewhat cyclic pattern.
Note that the higher order multipaths (2 1) and (2 V 1) are not
present in all of the data. Figs. 6 and 7 constitute the complete
set of network input training data available to the network.

The network output training set consists of the five EOF
coefficients associated with each of the 65 observed SSP’s.
The EOF coefficients were solved as a five parameter linear
least-squares fit of the EOF basis functions to the 65 observed
SSP’s. Owing to the large variance of the low order EOF’s,
the resulting magnitude of coefficients was in the range of
[—-0.1-0.15]. To avoid training the network to these small
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Fig: 7. Input training set: Multipath ATOF’s for the multilayer perceptron.

The computed TOF’s have been scaled by a factor of 100. The acoustic paths
are: (1 V 0)—direct, (1 0)—surface reflection, (2 1)—2 surface one bottom
reflection, (2 V 1)—bottom reflection.

target values, the EOF’s were scaled by 0.01, resulting in
the coefficients being scaled by a factor of 100. Fig. 8 plots
the resulting EOF coefficients and constitutes the network
output training set (target values). Except for the sea-surface
temperature, and marginally for the reflected acoustic time-
of-flights, the environmentally derived training data does not
exhibit the temporal regularity that one might expect. This
may be a reflection of the dynamic nature of the interacting
water masses in Onslow Bay.

D. Sensitivity Study

The objective of the sensitivity study is to identify the
information content of the input parameters in relation to
the networks ability to learn the output transformation as
efficiently and accurately as possible. It is conducted by
training the network with various combinations of the input
parameters and identifying the combination which produces
the fastest convergence and minimum output error. Another
goal is to identify whether or not inclusion of additional
training information can improve the network performance
based on inputs that are not included in the training data. That
is, what effect does the information content of the training
set have on the ability of the network to generalize based
on what it has learned from training? The generalization
capability is of central importance since the utility of the
network ultimately lies in producing accurate estimates based
on unknown (untrained) input data. This is accomplished by
training the network with subsets of the training set, and
observing the trained networks output error for untrained
inputs. Each of these endeavors might identify changes to
the network architecture. The former will indicate if any of
the input units can be removed from the network, while the
latter may mandate increasing the hidden layer structure and
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Fig. 8. Output training set: EOF coefficients computed from a five parameter

linear least-squares fit of the EOF’s to the observed SSP’s. The EOF’s were
scaled by 0.01.

number of intermediate weights to accommodate learning a
larger training set.

1) Input Parameter Sensitivity: To perform the input pa-
rameter sensitivity study, the contribution of an input param-
eter is controlled by either obtaining its value from the input
training set or clamping its input value to zero. The weights
and thresholds are initialized to psuedorandom uniform values
over [—1, 1], and this same set of random initializations is
used for each network configuration. A learning rate coefficient
of 0.002 is used. Since the purpose is to asses the utility
of each of the input parameters to the learning process,
it is not necessary to fully train the network for optimum
prediction performance which typically requires thousands of
iterations. It is only required that the error minimization seek
out the local parameter space of the global error minimum,
which was observed to occur within 200 iterations for all
network conﬁguratiéns. The network is therefore sequentially
presented the 65 training sets for 250 iterations. The RMS
error between the desired output and network computation
(RMS,,) is recorded for each input parameter configuration
at the conclusion of training. This error quantifies the average
deviation of the M = 5 predicted EOF expansion coefficients
from those of the target set, averaged over the P = 65 training
sets as- follows

M

pL D12 (e - dij)”

i=1 {j=1

RMS, = (©)

Table II summarizes the input parameter combinations and
resultant RMS errors in prediction of the five EOF expansion
coefficients. A check mark indicates that the input parameter
was included in the network configuration.
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TABLE II
INPUT PARAMETER “SENSITIVITY STUDY
Time | Surface | Botiom | 1V 0 10 21 2V 1 RMS,
A°C AC ATOF | ATOF | ATOF | ATOF

1 v v ' v 4 v 's 1.308 .
2 s v s 's v v 0.989
3 v v v v v v 0,896 .
4 ' ' v v v v 1.489
5 v v 4 4 v I'4 : 0.680
6 4 ' ' '4 ' 1.033
7 4 ' v ' 'd 1.034
8 v '4 4 v '4 v 1.607
9 ' s ' 4 ' v 1.191
10 'd v v ' 4 4 2.067
11 ' ' v v 1.806
12 7 v s v v 1.737
13 ' 4 ' v 1.525

7/

The first line of Table II represents the result of presenting
the full input training set to the network. Lines 2-5 sequentially
remove the tomographic information presented as input for the
four acoustic multipaths. Lines 6 and 7 indicate results for
removal of the reflected and refracted eigenrays respectively,
while lines 8-10 isolate effects- of withholding the time-of-
year, bottom and surface temperature variations respectively.

Inspection of the RMS errors as a function of the tomo-
graphic input (rows 2-7) reveals two important conclusions.
First, removal of the TOF variation for the surface-bottom-
surface [2 1] reflected eigenray has the greatest detrimental -
effect on network accuracy. This is expected since this acoustic
path provides the most complete sampling of the vertical SSP
structure. ,

Second, removal of the refracted bottom-reflected path
[2 V 1] results in the smallest RMS prediction error of any
of the input parameter configurations. This means that the
tomographic information contained in this eigenray was serv-
ing to confuse the network in learning the desired functional
mapping. It indicates that the data from the [2 V 1] eigen-
ray is adding more noise than information in deciding the
optimal network output. This is consistent with the fact that
this eigenray propagates nearly horizontally, and samples on
average only the lower 33 meters of the water column, thereby
missing information contained in the crucial near surface area.

The results presented in lines 8 and 10 provide additional
insights to the sensitivity of the network inputs. They indicate
that the surface temperature variation is the single most
influential input parameter in the learning, while the time-of-
year also contributes largely to accurate functional mapping.

“Based on the results presented in lines 2-10, combinations

of input parameters which excluded the less important inputs
were tried in order to identify if a reduction in input parameters
could be found that would not adversely affect the network
error. The results of three such combinations are presented
in lines 11-13, where the reduction in inputs only served to
increase the network error.

The results of the input parameter sensitivity study reveal
that the bottom refracted tomographic input available from,
the complete training set was increasing the RMS error of the
network output. Accordingly, the network was reconfigured
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TABLE III
RMS ErrOR (RMSggp ) IN NETWORK PREDICTION OF S1x SSP’s NoT INCLUDED
IN THE TRAINING SET, FOR TRAINING SETS OF SIZE 65, 55, 45, AND 35, AND FOR
A FivE PARAMETER LINEAR LeasT-SQUARES FiT oF EOF’s To THE Six SSP’s

Number of Training Sets
35 45 55 65 EOF Least
Day Squares Fit
45 6.07 4.28 393 | 434 1.26
108 3.90 9.99 4.59 3.81 0.69
154 6.53 4.25 494 | 435 0.86
205 1.59 241 0.96 2.51 0.75
267 6.17 5.53 2.42 1.11 0.64
327 6.93 3.35 3.82 1.89 0.72
Avg
RMSg || 5.20 4.97 3.28 | 3.00

to accept an input vector of six parameters, and all following
results were obtained from such a configuration.

2) Training Set Sensitivity: To investigate the information
content of the representative SSP’s selected for the network
training set, the network was trained for 3000 iterations
with identical weight and threshold initializations for the
full 65 SSP training set, and subsets consisting of 55, 45,
and 35 training sets selected at random. Six profiles which
were not included in the training: set were chosen from
the database and were used to generate input data for the
trained networks. The six profiles were selected to span
the entire year, and are delineated by the day-of-year on
which they were measured (45, 108, 154, 205, 267, and
327). The trained networks were then presented the input
data from the six “unknown” profiles, and used to estimate
the corresponding EOF expansion coefficients. The predicted
SSP’s were constructed from the EOF’s, and the RMS error
of the estimated profile with respect to the observed data
(RMSsgp) calculated. These errors are presented in Table III
along with a comparison to the error of the five parameter
linear least-squares fit of the EOF’s to the observed profiles.

The results of Table III show that averaged over the six un-
trained profiles, the RMS error in prediction of SSP’s decreases
as the number of training sets is increased. This indicates that
the training set may have not yet reached its full potential in
providing information usable to the network concerning the
transformation of the statistical and environmental inputs into
appropriate EOF coefficients. It is also observed that the error
for the full training set condition is roughly two to five times
that of a five parameter linear least-squares fit of the EOF’s to
the SSP’s. This also suggests that the network training set is
incomplete. However, it can be seen that use of the full training
set does not ensure the minimum error prediction for each of
the profiles. Specifically, the profile of day 205 was optimally
predicted by the network trained with 35 sets instead of the
available 65. This illustrates the sensitive interdependence
between the generalization capabilities of neural networks
and the ability of the network to accurately learn the desired
functional transformation based on the information content of
the training data.

E. Neural Network SSP Prediction

Fig. 9 presents SSP predictions for six sets of input pa-
rameters derived from profiles that were not included in the
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Fig. 9. Neural network prediction of six SSP’s not included in the training

data.

training set. The network was trained for 3000 iterations with
the full training set, and the resulting RMS error of the five
EOF expansion coefficients over the 65 training profiles was
RMS,, = 0.077. The error in sound speed (RMSggp) for each
of the profiles is tabulated in the 65 training set column of
Table IIL

IV. CONCLUSION

A multilayer perceptron neural network has been imple-
mented to predict ocean sound speed profiles based on the -
input of remotely sensed acoustic tomographic, and ocean
boundary temperature data. Empirical orthogonal functions of
sound speed variation were computed from a historic sound
speed profile database, and a truncated series of the orthogonal
functions form the basis of the predictive model. The remotely
sensed environmental data specifies the boundary conditions,
and allows the trained network to estimate the series coef-
ficients based on generalization of the learned input\output
transformation.

An attractive aspect of the perceptron neural network is
the computational efficiency with which SSP predictions can
be made once the network is trained and the input data for
a prediction are collected. All that is required is to present
the input data to the trained network, process one forward
sweep through the network, and implement the EOF expansion
coefficients to construct an SSP estimate. The computational
burden arises from training of the network, during which
feedback error from the network output is minimized over
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the training set. Construction of the training set may require
significant work to process and identify the sensitive input
parameters, and may serve to adjust the configuration of the
network itself.

Network predictions on untrained input parameters pro-
duced RMS errors over the depth of the profiles in the range
of 1.1-4.4 m/s. A linear least-squares fit of the basis functions
to these profiles resulted in RMS errors from 0.7 to 1.3 m/s,
indicating that the network architecture/training data were not
fully optimized to the desired transformation. A sensitivity
study of the information available in the network training
set revealed that the surface temperature, time-of-year, and
acoustic time-of-flight from the eigenray which maximally
samples the vertical sound speed structure were of primary
importance in learning the desired transformation. It was
also shown that the time-of-flight from a downward refracted
bottom reflection path was serving to confuse the network and
decrease the training efficacy.

The above results demonstrate that realization of real-

time SSP estimates in a complex coastal environment based
on input of remotely sensed data to a neural network are
feasible, however, two limitations related to the physical
significance of the proposed method should be mentioned.
First is the assumption that the mean values of temperature
and acoustic time-of-flight which were removed from the
training data are stable. Temperature dependent geophysical
ocean parameters are expected to have time-dependent means,
and so the significance of assuming that the means were stable
over the period of .the historic database should be assessed.
Second is the use of a range-independent acoustic model for
computation of the time-of-flights. Since the site investigated
in this work is near both the continent and the Gulfstream,
a range dependent model which could incorporate sea-surface
temperature and bottom tomography variations between the
acoustic sensors should be explored.
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